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The critical behaviour of a quantum spin problem with 
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Abstract. The critical behaviour of an king like model with three-spin coupling is studied 
in a transverse field. A self-dual renormalisation group transformation can be applied 
which gives well converging results for the critical exponents when large enough cells are 
taken. Finite size scaling on the same model gives comparable results. 

1. Introduction 

In a recent paper by Turban (1982) an Ising like model in a transverse field with 
multispin interaction has been introduced: 

m - l  

%'(m) (A)  = - A  n a:+! -c a:, 
i 1=0 i 

where ax and a' are the Pauli operators. 
The same Hamiltonian has been considered independently by Penson et a1 (1982). 

Both papers show that the model is self-dual and address the question of whether 
for m 2 3 the transition is of first order, as suggested by the mean field theory, or can 
be of second order. Penson et a1 (1982), using finite size scaling arguments, conclude 
that the critical value of m above which the transition is of first order is probably 
m, = 4 in the one-dimensional case. 

In this paper we report the results of a renormalisation group calculation for the 
m = 3 case. We have chosen a procedure which preserves the self-duality. As will 
be seen, our calculation suggests a second-order transition for the m = 3 case. The 
values for the critical exponents converge quite well as larger and larger cells are 
taken in the renormalisation procedure. Finite size scaling in a somewhat different 
form than that used by Penson et a1 (1982) confirms the results of the renormalisation 
group treatment. 

2. Renormalisation procedure 

The renormalisation group procedure for quantum spin systems has been formulated 
originally for the Ising model in a transverse field by Pearson er a1 (unpublished) and 
Drell et af (1977). This block method has been recently applied to a variety of 
quantum problems; for a review see Pfeuty et a1 (1982). An alternative procedure, 
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the decimation transformation, has been proposed by Fradkin and Raby (1979). It 
has been shown by S6lyom (1981) that the two methods are dual to each other for 
self-dual models with pairwise interaction. 

The present model of equation (1.1) is self-dual, but contains multispin interactions 
and therefore the duality of the two renormalisation procedures will not hold. It can 
easily be seen, however, that for the m = 3 case the decimation transformation 
conserves the self-duality and therefore this procedure will be used in the present paper. 

After choosing a scale factor 6 ,  the spins at sites i = nb + 1, n = 0, 1 ,  2, , . , are 
fixed arbitrarily while the intermediate spins are integrated out. For convenience the 
sites are relabelled as i = ( j ,  a) where j = 1, 2, , . . denotes the cell and a = 0, 1,  . . . , 
b - 1 labels the sites in a cell. The fixed spins are at sites j ,  0. The Hamiltonian is 
split into 

X =%e,+ v (2.1) 
where 

and 

i i 

contains the transverse field acting on the selected spins and the couplings which 
couple the different cells. 

The eigenvalues of Xo can be calculated for any fixed configuration of the selected 
spins, Keeping for any configuration the lowest lying level only, the matrix elements 
of V between these states will give the renormalised couplings. 

For the model with three-spin coupling this procedure can be used to give a 
reasonably good approximation if the scale factor is not an integer multiple of 3. The 
fourfold degeneracy of the ground state in the large A limit is not reproduced if the 
scale factor is b = 31; the decimation will always yield a ferromagnetic ground state. 
We have therefore performed the calculations for scale factors b = 2, 4, 5 ,  7, 8 and 
will compare the results as the scale factor increases. 

When the cell problem X o  is solved, the two end-spins of the cell can be in four 
different configurations. It is easily shown that these four problems are not indepen- 
dent. Let us take both end-spins to be in the f state and solve this eigenvalue and 
eigenfunction problem. The eigenvalue problem when the configuration of the end- 
spins is (ti), (it) or (J.1) is exactly the same and the eigenfunctions in terms of the 
intermediate spins can be easily obtained by a simple transformation. The eigenfunc- 
tions belonging to the (t.1) end-spin configuration can be obtained from that of the 
(tt) configuration by reversing the spins at the intermediate sites a = 1, 2, 4, 5 ,  7,  
8, . . . . The eigenfunctions belonging to the (Lt) end-spin configuration can be similarly 
obtained by reversing the spins at sites a = b - 1,  b - 2, b - 4, b - 5,  b - 7, b - 8, . . , , 
The eigenfunctions of the (Li) configurations are obtained by applying both transfor- 
mations successively. 

Due to the above mentioned transformation properties of the cell functions the 
renormalised Hamiltonian will have the same structure as the original one, i.e. it will 
contain a three-spin coupling term and a transverse field, and no new couplings will 
be generated. 
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3. Results 

If the transverse field strength is rescaled to unity a one-parameter recursion relation 
is obtained for the coupling A whose non-trivial fixed point is always at the self-dual 
point A = 1. Linearisation of the recursion relation around A = 1 yields the thermal 
eigenvalue A ,  and the thermal exponent v. The results for the various scale factors 
are given in table 1. The table also contains the results for the dynamical exponent 
z calculated from the rescaling of the transverse field and the values for the specific 
heat exponent a calculated from the scaling law 

2 - a  = (1 +z)v. (3.1) 

Furthermore we have studied the behaviour of the model in a longitudinal magnetic 
field in order to calculate the magnetic eigenvalue A ,  and the magnetic exponent p. 
It turns out that the inclusion of a longitudinal field will generate during the renormali- 
sation procedure a usual Ising coupling, therefore we have considered the effect of 
the perturbation 

(3.2) 

in linear order, The magnetic eigenvalue is the largest eigenvalue of the recursion 
relations in the (A 1, A z )  plane at the original fixed point A = 1, A = A 2  = 0. The results 
for the magnetic eigenvalue and exponent are also given in table 1. 

Table 1. Eigenvalues of the renormalisation group recursion relations and the critical 
exponents calculated with different scale factors in the decimation. 

Eigenvalues 

thermal magnetic Critical exponents 
Scale 
factor A t  A, U z P a 

2 3 1.62 0.631 1 0.193 0.738 
4 6.85 2.82 0.720 0.645 0.182 0.815 
5 9.15 3.38 0.727 0.655 0.177 0.797 
7 14.03 4.47 0.737 0.620 0.170 0.806 
8 16.67 5.00 0.739 0.621 0.167 0.802 

As one can see, instead of the usual odd-even effect we have here an oscillation 

Plotting the results for the exponents as a function of l / ln  6-as suggested by the 
in z and a depending on whether b = 31 + 1 or b = 31 - 1. 

results on the Ising model-allows a reasonable extrapolation to 

v - 0.77. (3.3) 
Unfortunately a plot against neither l / l n b  nor 1/b gives a straight line for p ;  

therefore the estimated value 

p - 0.1-0.13 (3.4) 
has a big uncertainty. 



4070 F IgMi et a1 

4. Finite size scaling 

The result obtained for v is somewhat larger than the value suggested by Penson et 
a1 (1982) from finite size scaling. They have compared the gap for finite systems and 
calculated v from the vanishing of the gap. Because of the periodic boundary condition 
they could use rings containing 3, 6, 9, 12 or 15 sites. Instead of this procedure we 
have looked at chains with a free boundary condition which allows us to use arbitrary 
chain length. We went up to N = 9 sites because convergence seems to be fast enough. 

In the case of a periodic boundary condition the level structure for any finite ring 
of size 3n is such that the lowest level is non-degenerate, while the first excited state 
is threefold degenerate. In the thermodynamic limit these two levels become degener- 
ate for A B A , ,  yielding a fourfold degenerate ground state. 

For a free boundary condition the situation is different. The lowest level is again 
non-degenerate; the next level is, however, twofold degenerate if the number of sites 
in the chain is 3n or 3n + 2, while it is non-degenerate if the number of sites is 3n + 1. 
On the other hand the third level is non-degenerate or twofold degenerate for the 
two cases, respectively. 

These three levels will become degenerate in the thermodynamic limit. Due to 
this fact two gaps AI and A2 can be defined for finite chains. 

In the finite size scaling for quantum systems (Hametand Barber 1981) the relation 

NA(h,, N)  = (N + l)A(Ac, N + 1) (4.1) 

is used to locate the fixed point, where A(A, N) is the gap calculated for a chain with 
N sites. In the present case, when for any finite N two gaps are obtained, the fixed 
point can be calculated from any of them since in the N + m  limit the gaps will 
coincide. Since the boundary condition influences the various gaps differently, it 
seemed natural to average over the critical couplings and exponents obtained for the 
individual gaps. In table 2 we give this average of the fixed point couplings calculated 
from the comparison of different cells. Similarly the v exponent, given in table 2 and 
obtained from the 0 function of Roomany and Wyld (1980), is an average value. 

Table 2. The critical coupling A c  and the critical exponent U obtained from comparison 
of finite cells with N and N + 1 sites. The values given are averages as described in the text. 

Cell size A C  U 

394 1.382 0.687 
495 1.199 0.722 
5,6 1.123 0.745 
6,7 1.089 0.758 
7,8 1.064 0.765 
879 1.049 0.767 

Both quantities A,(N, N + 1) and v converge faster than 1/N. In fact A, seems to 
converge as l /N(N + 1) to the self-dual value A,  = 1 and v converges as exp( - N) to 

v = 0.77 (4.2) 
confirming our earlier results obtained by the renormalisation group treatment. 
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5. Discussion 

In this paper we have studied the critical behaviour of a quantum spin system with 
three spin couplings. The decimation transformation is ideally suited to treat this 
model by the renormalisation group method since the self-duality of the model is 
preserved and no new couplings are generated. Taking different scale factors up to 
b = 8, the critical exponents have been calculated yielding the values given in equations 
(3.3) and (3.4). The value obtained for Y is higher than the one obtained by Penson 
et a1 (1982) from finite size scaling. Our modified finite size scaling procedure is, 
however, in agreement with the results of the renormalisation group calculation. Thus 
this model is not in the same universality class as the four-state Potts model, as one 
could have guessed from the degeneracy structure of the low lying levels. 

The renormalisation group procedure cannot be extended simply to the other m 
values and therefore it is not suitable for studying when the first-order behaviour will 
occur. Finite size scaling, however, can be used and we plan to return to this problem 
later. 

Acknowledgments 

One of the authors (JS) expresses his gratitude to the University of Novi Sad and the 
Academy of Sciences of SAP Vojvodina for their hospitality in Novi Sad where part 
of this work was done. Two other authors (DK and MS) acknowledge the help of J 
SetrajciC and Lj JerigiC in the numerical calculations. 

References 

Drell S D, Weinstein M and Yankielowin S 1977 Phys. Reo. D 16 1769-81 
Fradkin E and Raby S 1979 Phys. Rev. D 20 2566-82 
Hamer C J and Barber M N 1981 J.  Phys. A: Marh. Gen. 14 241-57 
Penson K A, Jullien R and Pfeuty P 1982 Phys. Reo. B 26 6334-7 
Pfeuty P, Jullien R and Penson K A 1982 Real-Space Renormahation ed T W Burkhardt and J M J van 

Roomany H H and Wyld H W 1980 Phys. Reo. D 21 3341-9 
S6lyom J 1981 Phys. Reo. B 24 230-43 
Turban L 1982 J. Phys. C: Solid Srare Phys. 15 L65-8 

Leeuwen (Berlin: Springer-Verlag) pp 119-47 


